
General Relativity and Cosmology II

Behrang Tafreshi

Based on prof. Victor Gorbenko’s lectures in Spring 2024

Physics department
EPFL



Contents

1 Introduction 1

2 Expanding Universe 3
2.1 Brief history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 FLRW spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Solutions of Friedmann equations . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Cosmological Horizons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.5 Redshift and Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.1 Redshift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.2 Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Thermal History 15
3.1 Statistical Physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Cosmic Microwave Background Temperature . . . . . . . . . . . . . . . . . . 17
3.3 g∗ in the Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.4 Particle Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.4.1 Adding Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4.2 Freeze in Freeze out . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.5 Recombination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Neutrinos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4 Big Bang Nucleosynthesis 27
4.1 Neutron-Proton ratio, Freeze-out of Neutrons . . . . . . . . . . . . . . . . . . 27
4.2 Nuclear reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.1 4He Abundance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2 Abundance of Deuterium . . . . . . . . . . . . . . . . . . . . . . . . . 31

5 Baryogenesis 32

6 Dark Matter 34
6.1 DM Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.2 Dark Matter Candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.2.1 Neutrino Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6.2.2 Axion Dark Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.2.3 Weakly Interacting Massive Particle (WIMP) . . . . . . . . . . . . . . 37
6.2.4 Primordial Black Holes . . . . . . . . . . . . . . . . . . . . . . . . . . 38

7 Inhomogeneous Universe 39
7.1 Jean’s Instability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.2 Linearized General Relativity . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.3 CMB Fluctuations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8 Inflation 50
8.1 Recap of de-Sitter space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
8.2 Slow-roll Inflation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
8.3 Perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

I



1 Introduction

Introduction

Throughout your studies, you may have encountered some of the following statements about
the universe:

• The universe is homogeneous and isotropic.

• It is currently expanding at an accelerated rate.

• The universe was once extremely hot and dense.

• Relic black-body radiation permeates the universe.

• There are two main types of matter: ordinary matter and dark matter.

• The universe is dominated by dark energy.

• Light elements such as deuterium, helium-3, helium-4, and lithium were formed in the
first few minutes after the Big Bang.

• The universe underwent a rapid phase of inflation in its early stages.

• The large-scale structures we observe today, such as clusters of galaxies, originated
from quantum fluctuations.

The goal of these lectures is to delve into these statements and provide a comprehensive
understanding using the principles of general relativity, equilibrium and non-equilibrium
statistical mechanics, and particle physics.

Structure of the Lecture Notes

The lecture notes are organized as follows:

• Friedmann-Robertson-Walker (FRW) Metric: Homogeneous universe, distances
and horizons, cosmological epochs, and the ΛCDM model.

• Thermal History: Evolution of matter and radiation, Cosmic Microwave Back-
ground (CMB), Big Bang Nucleosynthesis (BBN), with a brief discussion on baryoge-
nesis.

• Dark Matter: Evidence for dark matter and the most popular candidates.

• Theory of Cosmological Perturbations: CMB and the growth of structure.

• Inflation: The theory and implications of cosmic inflation.
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Suggested References

For further reading and deeper understanding, the following references are recommended as
supplementary material:

• Landau-Lifshitz, The Classical Theory of Fields (Volume II)

• Kolb and Turner, The Early Universe

• Weinberg, Cosmology (2007)

• Gorbunov and Rubakov, Introduction to the Theory of the Early Universe (especially
for the second part of the course)
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2 Expanding Universe

2.1 Brief history

In order to better understand the scales at which we are going to work with, we state some
basic facts about the universe :

• On very large scales (on average) the universe is isotropic and homogeneous and spe-
cially flat.

• The universe has been expanding, meaning that the distances between different objects
are growing.

To illustrate this point, we can draw a diagram for the scale factor (rigorously defined
later) which gives a sense of the dynamics of the distances between different objects :

We can also calculate the abundance of the different components of the universe, which
turn out to be:
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To clarify the first point, we need to specify what we mean by large scales as in ordinary
day to day experiences the universe is definitely neither homogeneous nor isotropic.

At the moment, the size of the observable universe is around 5 × 103Mpc, and from
observations, it is homogeneous on scales greater than 10Mpc.

Remark. It is good to have the following scales in mind :

• Distance between sun and earth : 1.5× 1011m

• Galaxy : 5× 104l.y.

• 1pc ≈ 3l.y. = 3× 1016

2.2 FLRW spacetime

As we stated previously, the universe is homogeneous and isotropic on large scales (that we
can see). Based on these symmetries we can determine the spacial metric gij which describes
the geometry at a given time (for any timeslice). We have

R(3) = const.

Rij =
1

3
Rgij

Rijkl = cR[gikgjl − gilgjk].

(2.1)

By taking the trace of the Riemann tensor we see that c = 1
6 .

Depending on the sign of the Ricci scalar, there are three different cases in general :

• R = 0 is just the three-plane R3

• R > 0 is the 3-sphere S3 defined by the equation :

x21 + x22 + x23 + x24 = a2. (2.2)

Clearly this equation is homogeneous and isotropic. Let us use the following coordi-
nates on the sphere :

x1 = r sin θ cosϕ

x2 = r sin θ sinϕ

x3 = r cos θ

x4 =
√
a2 − r2

(2.3)
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Taking the differentials and adding them together we have :

dx21 + dx22 + dx23 = dr2 + r2dΩ2
2 (2.4)

where dΩ2
2 is the metric on S2. Finally, we have :

dx24 =
r2dr2

a2 − r2
. (2.5)

Putting all the ingredients together we have :

ds2 =
a2dr2

a2 − r2
+ r2dΩ2

2. (2.6)

The curvature of the sphere is proportional to a−2 : R ∼ a−2.

• R < 0 is the Hyperbolic space H3, also known as the Euclidean Anti-de Sitter space.
Consequently, using the result for the sphere, we just take a2 → −a2 to get a negatively
curved space :

ds2 =
a2dr2

a2 + r2
+ r2dΩ2

2. (2.7)

In order to have an embedding of the hyperbolic space, we could use the following
condition :

x21 + x22 + x23 − x24 = −a2. (2.8)

There is a unified description of all the metrics :

ds2 = a2(
dr̄2

1− kr̄2
+ r̄2dΩ2

2), (2.9)

where k = 1, 0,−1 corresponds to spherical, flat and hyperbolic space respectively.
Now we go back to describing the full 4-dimensional geometry by just adding the time

coordinate :

ds2 = −dt2 + a2(t)(
dr̄2

1− kr̄2
+ r̄2dΩ2

2), (2.10)

where so far, a(t) is a function of time called the scale factor. This is the metric of
Friedmann-Lemaitre-Robertson-Walker. It has the same symmetry properties for a
generic a(t).

Remark. It is possible to consider spaces with the same local metric but non-trivial topolo-
gies.

Friedmann Equations : On large (observable) scales, the universe is well approximated
by the FRW metric. In the first part of the course we will study this homogeneous ap-
proximation. Our next goal will be to determine the function a(t) from the Einstein field
equations.

Let us start by reminding the Einstein field equations :

Gµν = 8πGTµν , (2.11)
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where Gµν = Rµν − 1
2gµνR is the Einstein tensor. Sometimes it is convenient to single out

the cosmological constant from Tµν :

Tµν = Tm
µν + Λ

1

8πG
gµν . (2.12)

Now we substitute the FRW metric to determine geometric invariants [see Carroll 8.44 [1]] :

Γ0
ij =

ȧ

a
gij , Γi

0j =
ȧ

a
δij , Γi

jk =
k

a2
gjkx

i. (2.13)

The Ricci tensor and Ricci scalar read :

R00 = −3 ä
a
,

Rij = (
ä

a
+ 2

ȧ2

a2
+ 2

k

a2
)gij ,

R = 6(
ä

a
+
ȧ2

a2
+

k

a2
).

(2.14)

Now we get to calculating the other side of the Einstein equation, the energy momentum
tensor. Let us assume that the content of the universe is a perfect fluid, only characterized
by its velocity uµ. In this case, there are only two invariant tensors available for building
the energy momentum tensor :

Tµν = Auµuν +Bgµν . (2.15)

In the rest frame of the fluid in flat space, the above reduces to :

uµ = (1, 0, 0, 0),

Tµν = diag(ρ, p, p, p).
(2.16)

Therefore, we have :
B = p, A = ρ+ p

⇒ Tµν = (ρ+ p)uµuν + pgµν
(2.17)

Now the (00) and (ij) components of the Einstein equations read :

(00)⇒ ȧ2

a2
+

k

a2
− Λ

3
=

8πG

3
ρ,

(ij)⇒ 2
ä

a
+
ȧ2

a2
+

k

a2
− Λ = −8πGp,

(2.18)

where the first equation is called the first Friedmann equation.
Note that the Einstein equations gave us two independent equations, however, we have

three unknowns. The reason is that the Einstein equations are not supposed to tell us what
kind of matter we are dealing with. That has to do with the type of matter itself. Therefore,
we have to specify the matter equation as well, which relates ρ and p. Simple models of
matter produce :

p = ωρ (2.19)
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Depending on what we are dealing with, ω can take different values. For example, these
are the mostly used values in cosmology :

ω =


0 Pressure-less dust
1
3 Relativistic matter & radiation

−1 Cosmological Constant

(2.20)

Remark. The null energy condition stipulates that for any future directing null vector field
kµ, Tabk

akb ≥ 0. In this context, the null energy condition translates into ω ≥ −1.

Moreover, combining the first Friedmann equation with the (ij) component of the Ein-
stein tensor, we get :

ä

a
=

Λ

3
− 4πG

3
(ρ+ 3p), (2.21)

which is called the second Friedmann equation. This equation is particularly useful as the
sign of ä is manifest.

Furthermore, computing the conservation of the energy-momentum tensor gives :

∇µT
µν =

∂

∂t
(ρa3) + p

∂a3

∂t
= 0. (2.22)

Note that this is the first law of thermodynamics :

dE + pdV = 0. (2.23)

Remark. Bear in mind that the energy-momentum conservation equation is not indepen-
dent from the Friedmann equations as it follows from Einstein’s equations.

Remark. We write both Friedmann equations in here for reference :

ȧ2

a2
+

k

a2
− Λ

3
=

8πG

3
ρ,

ä

a
=

Λ

3
− 4πG

3
(ρ+ 3p).

(2.24)

There are other ways of writing the Friedmann equation which can be useful in certain
contexts. For starters, the Hubble parameter (constant) is defined as follows :

H ≡ ȧ

a
. (2.25)

Now the first Friedmann equation can be written as follows :

H2 =
8πG

3
(
∑

ρi), (2.26)

where the sum goes over the different components such as the cosmological constant, matter,
radiation, curvature, ... .

Remark. Note that we defined the curvature density as ρk = − 3
8πG

k
a2 .
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Furthermore, it is common to define the critical density as :

ρc =
3H2

0

8πG
, (2.27)

where H0 is the Hubble parameter at the present (t = t0). Therefore, the Friedmann
equation for present time can be written as :

ρc =
∑

ρi,0. (2.28)

Moreover, define :

Ωi =
ρi,0
ρc

⇒
∑

Ωi = 1.
(2.29)

Note that the above equation is the Friedmann equation at the present. In general we have
:

H2 = H2
0 [ΩΛ +Ωk(

a0
a
)2 +Ωm(

a0
a
)3 +Ωγ(

a0
a
)4]. (2.30)

One useful way of thinking about the above equation (which is by the way still the first
Friedmann equation) is to multiply by a :

ȧ2 = U(a) ∼ motion potential. (2.31)

In the following subsection, we will discuss solutions where one of the components dom-
inates as well as global de-Sitter space (Λ + k).

2.3 Solutions of Friedmann equations

The Einstein static universe : This solution of the Friedmann equation has historical
significance but it is not compatible with observations. Upon thinking about the universe,
Einstein wanted to have a solution with :

ρ ̸= 0, ȧ = 0, (ä = 0). (2.32)

It is important to note that these assumptions are not based on firm grounds. Only histor-
ically, they seemed natural to physicists.

Upon these assumptions, the Friedmann equations (2.24) reduce to :

k

a2
− Λ

3
=

8πG

3
ρ,

k

a2
− Λ = 0.

(2.33)

The above system of equations, admit the following solution :

a =
1√
Λ
, k = 1, Λ = 4πGρ. (2.34)

This is when the cosmological constant was first added to general relativity!
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Flat matter dominated universe : In this case, we are assuming that the universe is
matter dominated and therefore, Λ⇒ 0. Moreover, k = 0 and p = 0 (dust like matter). In
these limits, the Friedmann equations (2.24) reduce to :

ȧ2

a2
=
Gρ

3
,

2
ä

a
+
ȧ2

a2
= 0.

(2.35)

Note that from the energy-momentum conservation (2.22) (from here on we may use the first
law of thermodynamics with this phrase interchangeably) we have ρa3 = const., because we
are working with pressure-less matter. Therefore, define : C = ρa3. The above equations
can now be solved easily :

ȧ2

a2
=
GC

3a3
⇒ da

dt
=

√
GC

3a
⇒ da

√
a = dt

√
GC

3

⇒ 2

3
a3/2 = (t− t0)

√
GC

3
.

(2.36)

Therefore, we have :
a = a0(t− t0)2/3,

ρ =
ρ0

(t− t0)2
.

(2.37)

Remark. Note that for the above solution, we have ȧ > 0 and ä < 0.

General equation of matter : Note that the energy-momentum conservation (2.22) can
also be written as :

ρ̇+ 3
ȧ

a
(p+ ρ) = 0

⇒dρ

ρ
= −3(1 + ω)

da

a

⇒ρ = ρ0a
−3(1+ω)

(2.38)

Moreover, in the spatially flat case without cosmological constant, from the first Friedmann
equation (2.24) we have :

ȧ2

a2
=

8πG

3
ρ = a−3(1+ω)

⇒a = a0t
2

3(1+ω) .

(2.39)

Remember that ω ≥ −1.

Remark. Note that if there are two different types of matter in the universe, the one with
smaller ω dominates at late times. Just like our own universe where dark energy (ω = −1)
has dominated all other forms of matter and energy.

Remark. Note that curvature can be thought of like the other matter components, with
ρ < 0 and ω = − 1

3 . You can see this from the first Friedmann equation (2.24) where

curvature contributes a k
a2 term.
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2.4 Cosmological Horizons

In this part of the discussion, we will use Penrose diagrams to have a better understanding
of the FRW universe.

Define dη = dt
a(t) . We call η the conformal time. Using this change of coordinates, we

can write the FRW metric as :

ds2 = −dt2 + a2(t)dx⃗2 =
1

Ω2(η)
(−dη2 + dx⃗2), (2.40)

therefore, the FRW metric has the same causal structure as the Minkowski space, however,
it consists of only part of it :

Remark. We should check whether our change of variables to conformal time is possible.
To do so, we should check if η is finite after taking the integration. It turns out that η is
finite if ω < − 1

3 .

Remark. You can see from the diagram, that there are observers who will not ever be in
causal contact, ever again! The difference with the black hole horizon is that it is observer
dependent. One may say that it is a democratic version :)

As promissed in the previous part, we briefly investigate de-Sitter space. Consider the
case of a space consisting only of cosmological constant.

if : k = 0, Λ > 0, ω = −1, pm = ρm = 0, (2.41)

we have :
ρΛ = const, a = eHt (2.42)

where H =
√

Λ
3 . In this case, however, there is no singularity at t = −∞.

The global de-Sitter space can be obtained using closed slicing where we would have :

a = H−1 coshHt. (2.43)

So not only de-Sitter space is homogeneous and isotropic in space, but it is also constant in
time!
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2.5 Redshift and Distances

In this subsection, We would like to understand how to measure distances and time in
cosmology and get some more intuition about FRW spacetimes.

2.5.1 Redshift

We know that light travels along null geodesics. Let us suppose further that all angular
parameters are constant. Furthermore, the light pulse was emitted at r = r1 and t = t1 and
observed by us at r = 0 and t = t0. Moving on null geodesics, we have :

dt = −a(t) dr√
1− kr2

⇒
∫ t0

t1

dt

a(t)
=

∫ r1

0

dr√
1− kr2

=


arcsin r1 k > 0

r1 k = 0

arcsinh r1 k < 0

(2.44)

Now suppose there is another light pulse sent shortly after the first one (see the figure
below). The second pulse is emitted at t = t1 + δt1 and observed at t = t0 + δt0.
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We then have : ∫ t0

t1

dt

a(t)
=

∫ t0+δt0

t1+δt1

dt

a(t)

⇒ δt0
a(t0)

=
δt1
a(t1)

.

(2.45)

Pay attention to the fact that we have δt = 1
ω . Therefore, we have :

ω0 = ω1
a(t1)

a(t0)
. (2.46)

Now in case we have an expanding universe, ω0 < ω1 or equivalently λ0 > λ1 which means
that the light pulse has been redshifted! This gives us the idea to define a measure of
redshift as :

z =
λ0 − λ1
λ0

=
a(t0)

a(t1)
− 1. (2.47)

Redshift is often used as a measure of time/distance, because we can measure it as we
know λ’s of many transitions. For example, we know the emission and absorption lines
of almost all elements and we receive light from a star that if blueshifted would give a
combination of some elements we know. Therefore, we can interpolate when the light was
emitted.

2.5.2 Distances

In this part we want to understand how different distances are related and measured in
cosmology.

First pay attention to the difference between physical distance and coordinate distance.

lp = a(t)lc

⇒dlp
dt

= ȧlc =
ȧ

a
lp = Hlp.

(2.48)

This last equation is called Hubble’s law. So far, the best measurement of the Hubble

parameter is H0 ≈
70 km

s

Mpc . (1 Megaparsec ≈ 3× 1022m)
In our next step, we would like to measure distances of faraway objects. There are

generally two main methods :

• Luminosity distance

• Parallax

Luminosity distance : The idea of luminosity distance comes from the fact that there are
astronomical objects with known luminosity called standard candles, e.g. Cepheid variables.
In the absence of expansion, apparent luminosity is :

P = L
s

4πd2
, (2.49)

where s is the telescope area and d being the so called luminosity distance.

12



Now, let us see what the luminosity distance depends on in an expanding universe :

P = L(
S

Stot
)(
ℏω0

ℏω1
)(
δt1
δt0

), (2.50)

with Stot being the total area of the light front, the second term accounting for the redshift
and the final term taking the change in time interval into account. Furthermore, we have :

Stot = 4πr2(t0, t1)a
2(t0)

⇒P = L(
a2(t1)

a2(t0)
).

S

4πr2(t0, t1)a2(t0)
.

(2.51)

Comparing with (2.49), we have the Luminosity distance :

d =
a2(t0)

a(t1)
r(t0, t1) = r(t0, t1)a(t0)(1 + z). (2.52)

Additionally, we can express the right hand side only in terms of the redshift. Remember
that from (2.44) we can write :

r(t0, t1) =



sin(
∫ t0
t1

dt
a(t) ) k = 1

∫ t0
t1

dt
a(t) k = 0

sinh(
∫ t0
t1

dt
a(t) ) k = −1

(2.53)

Now we need to find
∫ t0
t1

dt
a(t) . To do so, remember the first Friedmann equation in the

following form :

(
ȧ

a
)2 = H2

0 [ΩΛ +Ωk(
a0
a
)2 +Ωm(

a0
a
)3 +Ωγ(

a0
a
)4] (2.54)

Take x = a
a0

and A2(x) = ΩΛ +Ωk
1
x2 +Ωm

1
x3 +Ωγ

1
x4 . Therefore we have :

1

x

dx

dt
= H0A(x)

⇒
∫ t0

t1

dt

a(t)
=

∫ t0

t1

dt

dx

dx

a0x
=

1

a0H0

∫ 1

1
1+z

dx

x2A(x)
.

(2.55)

Finally, we can put all three cases (k = −1, 0, 1) in one equation :

d(z) = a0(1 + z)
1√
−k

sinh(

√
−k

a0H0

∫ 1

1
1+z

dx

x2A(x)
) (2.56)

Remark. Remember that the Ωi’s are constant numbers and depend only on the ”matter”
content of the universe. Therefore, A(x) is basically a rational function of x with constant
coefficients.
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Parallax

This method of measuring distances, makes use of the fact that earth is orbiting the sun.
As you can see from the figure, first we assume that stars which seem not to be moving are
so far away that effectively their light reaches us with parallel rays. Secondly, we have :

2r = d(α2 − α1), (2.57)

where r is the radius of earth’s orbit around the sun.

Remark. This way of measuring is actually the origin of parsec as well! 1 parsec is the
distance which corresponds to 1′′ parallax.

Remark. The Gaia experiment had around 10−5.1′′ precision, which made it very useful
for measuring objects at distances around 104∼5 light years away.

Remark. It is important to know that although the parallax method is far more accurate
than the luminosity distance method, it is only useful for closer objects. In practice, however,
parallax and luminosity distance (and potentially other measuring methods) are all used
alongside each other to have a more accurate estimate. In this way, we can even set the
coefficients of the A(x) function to fit the data in the best possible way.
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3 Thermal History

In this section, the goal is to understand how various matter components of the universe,
such as photons, electrons, protons, neutrons, neutrinos and some light atoms, exchange
energy and come in and out of equilibrium. In other words, we consider the evolution of
the universe as a piece-wise thermal equilibrium process. However, before getting into the
details, it is best if we do a quick review of statistical thermodynamics and equilibrium
physics, both to review and to set our notation.

3.1 Statistical Physics

We know that the full description of the system is given by the density matrix :

ρ̂ =
1

Z
exp(−Ĥ

T
+ µiQ̂i), (3.1)

where Z is the partition function, Ĥ is the Hamiltonian, Q̂i are representing the conserved
numbers and µi are the chemical potentials associated with them.

In many cases, components of matter and radiation are described by free particles.
However, this must not be confused so that they never interact (in that case there would
never be any equilibrium at all)! It is just so that we assume that non-equilibrium processes
very rapidly calm into equilibrium, after which, the particles are thought to be free, described
by their distribution in momentum space.

It is convenient to use momentum space distribution in the following form :

N =
g

(2π)3

∫
d3pn(p),

ρ =
g

(2π)3

∫
d3pE(p)n(p),

(3.2)

where g is the number degrees of freedom and n(p) the thermal distribution function (number
density). For the two different cases of Bose-Einstein or Fermi-Dirac distributions we have :

nB/F (p) =
1

exp(E(p)−µ
T )∓ 1

, (3.3)

where :
E(p) =

√
p2 +m2. (3.4)

Remark. Note that we did not write the thermal distribution functions as functions of
the momentum vector! This comes from the isotropy assumption that we discussed in the
previous section.

n(p⃗) = n(|p⃗|) = n(p). (3.5)

Now we can consider two limits : the Relativistic (p ≫ m) or Non-relativistic (p ≪ m)
limit.

The Relativistic Limit :

T ≫ mi, E(p) ∼ |p|. (3.6)

In this limit, both ρ and N can be computed analytically :
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ρi =
gi

(2π)3

∫
1

exp( |p|T )∓ 1
|p|d3p =

{
gi

π2

30T
4 Bosons,

7
8gi

π2

30T
4 Fermions,

(3.7)

and similarly for N :

Ni =

{
ξ(3)
π2 giT

3 Bosons,
3
4
ξ(3)
π2 giT

3 Fermions,
(3.8)

where ξ(z) is the Riemann zeta function. Using the above, we can see that the energy per
particle for bosons and fermions is :

< E >=
ρi
Ni
∼

{
2.7T Bosons

3.15T Fermions
(3.9)

It is common to define the ”effective number of relativistic species” as :

g∗ =
∑

bosons

gi +
7

8

∑
fermions

gi, (3.10)

after which we can write for the total energy density :

ρ =
π2

30
g∗T

4. (3.11)

We can also use the first law of thermodynamics to find an expression for the Entropy
density of the universe in the relativistic limit assuming zero chemical potential :

U = TS − pV. (3.12)

It is important to note that the volume considered in here we must think of the comoving
volume and not the physical volume! Therefore, we have :

s =
S

V
=
ρ+ p

T
≡ 4

3

ρ

T
, (3.13)

where we used the relativistic assumption in the last equality (p = ρ
3 ).

The non-Relativistic Limit :

mi ≫ T, m− µ≫ T, E = mi +
p2

2m
. (3.14)

Remark. Note that the chemical potential which we ignored in the relativistic limit, can be
of importance in the non-relativistic case.

The number and energy density of different components can be calculated to be :

Ni = gi(
miT

2π
)3/2exp(

µi −mi

T
)

ρi = miNi.
(3.15)

The expression for pressure is also :

pi ∼ giNiT ≪ ρi. (3.16)

Remark. Note that this is compatible with our equation of state in the previous section.
Previously, we said that for non-relativistic matter, we have that ω = 0 in p = ωρ. Here we
also found that pi ≪ ρi.
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3.2 Cosmic Microwave Background Temperature

The Cosmic Microwave Background (CMB) played (and is playing) a very important role in
development of cosmology (you can watch the colloquium by James Peebles for a historical
overview). We will study it in detail but now we just want to estimate its temperature. A
quick introduction for those who have never even heard of the CMB (which is odd if you
have this course :)) would be like this. When the universe started expanding, after some
time it cooled enough so that nuclei were formed but because of the still high temperature,
there were no neutral atoms. However, there is a point in the history of the universe, where
the temperature was low enough for the nuclei and electrons to form neutral atoms. At this
point, a flash of light is beamed because of this formation providing us with a picture of the
universe from its relatively early days.

Now in order to calculate the temperature of the CMB, we will assume that from its
formation till now, the universe has only gone through a radiation dominated phase.

Remark. Although this assumption is definitely not the most accurate assumption possible,
we will see that it still gives a reasonable estimate. This is a common theme in cosmology
to make an estimate using crude assumptions and then modifying the result step by step.

In a radiation dominated universe we have :

H = (
8πG

3
ρrad)

1/2 =
T 2

M0
(3.17)

with M0 = ( 45
4π3g∗G

)1/2 =
Mpl

1.66
√
g∗

and g∗ is the number of species that dominate in the

radiation epoch.
From the previous section we have :

a = a0(
t

t0
)1/2 ⇒ H =

ȧ

a
=

1

2t
⇒ 1

2t
=
T 2
rad

M0
(3.18)

From our assumption that the universe is radiation dominated, we know that this equation
is rather precise when ρm ∼ ργ (and earlier) which corresponds to teq ∼ 7× 105years or in
terms of temperature Teq ∼ 1eV . If we put current time t ∼ 1010years we get Tγ,0 = 10K.
Measurements of the CMB temperature show 2.73K. Our main source of error is because
of the matter domination era where a ∼ t 2

3 .

Remark. The reason for which our estimate was good is that :

t
2
3

t
1
2

∼ t 1
6 ,

zeq ∼ 103.

(3.19)

Therefore our estimate is off by a factor of (103)1/6 which is not large.

Remark. This is in the spirit of early days estimates in the Big Bang theory. Now, we can
do much better, but being able to get order of magnitude estimates is very important!

3.3 g∗ in the Standard Model

Our next task is to calculate the g∗ parameter using the standard model. There are different
sectors which we will take into consideration.
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• Scalar

– Higgs ∼ 1 + 3, where the 3 stand for the Goldstone bosons.

• Fermions :

– Quarks : u, d, c, s, t, b (each has a Left and Right with 3 colours each and their
anti-quark counterpart).

– Leptons : eL, eR, ν
e
L, µL, µR, ν

µ
L, τL, τR, ν

τ
L plus their anti-leptons.

• Vectors :

– Photons and 8 gluons (each having 2 polarizations as they are massless)

– W+,W−, Z (each having 3 polarizations as they are massive)

The total would be obtained by summing them all :

g∗ = 1 +
7

8
(6× 2× 3× 2) +

7

8
(9× 2) + (1 + 8)× 2 + 3× 3 = 106.75, (3.20)

at energies more than 172 GeV (more than the most massive particle in the standard model).

Remark. We should point out that we do not know for a fact that the universe was ever
that hot but if it was, then and only then, g∗ ∼ 100

Remark. It is important to note that this effective number of species can also be used as a
test for theories beyond the standard model.

3.4 Particle Kinetics

We now study how a gas of particles approaches equilibrium in an expanding universe, that
is we first assume a generic distribution function (isotropic and homogeneous) :

n(p, t), (3.21)

where p⃗ is the physical momentum. In the absence of interactions, comoving momentum is
conserved, therefore :

xp = axc ⇒ pp =
pc
a
. (3.22)

Remark. The justification for the above equation is as follows. For a massless particle,
we remember from last section that the wavelength of a photon decreases as the universe
expands. However, for a massive particle we have :

L =
1

2
ma2ẋiẋi =

p2p
2m

. (3.23)

As we know the FRW metric has translational invariance, we have :

pc = a2(t)ẋi =
∂L
∂ẋi

= a× pph. (3.24)
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Therefore we have :
n(pc, t) = n0(pph

a

a0
) (3.25)

We can now derive the infinitesimal change :
∂n
∂t = ∂n0

∂pc
.∂pc

∂t = n
′
pph

ȧ(t)
a0
,

∂n
∂pph

= ∂n
∂pc

. ∂pc

∂pph
= n

′ a(t)
a0
⇒ n

′
= a0

a(t)
∂n

∂pph

(3.26)

⇒ ∂n

∂t
=

a0
a(t)

.
∂n

∂pph
pph

ȧ(t)

a0
= Hpph

∂n

∂pph
, (3.27)

⇒ ∂n

∂t
−Hpph

∂n

∂pph
= 0. (3.28)

If we integrate over p we get (N =
∫
nd3p):

dN

dt
−

∫
d3p

(2π)3
Hpph

∂n

∂pph
= 0

⇒dN

dt
+ 3HN = 0,

(3.29)

where we used integration by parts in the last step.

Remark. It is important to bear in mind that this equation was derived for the case of
non-interacting particles.

3.4.1 Adding Interactions

In our next step,we would like to include the interactions among particles. We will focus
on 2 ⇒ 2 scattering (collisions) that can transfer momentum and hence change the phase
space distribution.

In order to include interactions, we use collision integrals.

∂n

∂t
−Hp∂n

∂p
= Icol.. (3.30)

The above equation is called the Boltzmann equation.
In general, the collision integral is of the following form (this comes from the BBGKY

hierarchy):

Icol. = −
1

2p0

∫
d3q1
(2π)3

d3q2
(2π)3

d3q3
(2π)3

(2π)4δ(4)(p+ q1 − q2 − q3)|Mfi|2×

(n(p)n(q1)[1± n(q2)][1± n(q3)]− n(q3)n(q2)[1± n(p)][1± n(q1)]),
(3.31)

where |Mfi|2 is the scattering amplitude. The first term corresponds to the right process
and the second term corresponds to the left process :

19



Remark. It is in general hard to solve the Boltzmann equation with the following colli-
sion integral as it involves derivatives and integrals and is non-linear. That is why we use
approximations.

Remark. In our collision integral it is obvious that we have not considered the possibility
of pair production. That is to say that particle number is conserved.

Remark. Note that the Fermi-Dirac statistics as well as the Bose-Einstein statistics are
solutions of the collision integral, meaning Icol.(nF/B) = 0.

The final remark allows us to use the relaxation time approximation. We use n ∼ neq.
We can now Taylor expand the collision integral in terms of this parameter :

Icol.(p) = (n− neq)(−Γ) + ... (3.32)

where Γ can be interpreted as the rate of reaction:

Γ = τ−1 = (<
λ

v
>)−1, (3.33)

where τ is the mean free time, λ is the mean free path, v is the relative velocity and the
average is taken using the equilibrium distribution (taking the average with the original
distribution would give a subleading term). We can also take the cross section as σ and
have :

λ = (σN)−1, (3.34)

with N being the number of particles in the volume. Therefore we can say :

Γ = τ−1 = (<
λ

v
>)−1 ≈< σNv > . (3.35)

Now if we again take the integral of the Boltzmann equation we have :

dN

dt
+ 3HN = −Γ(N −Neq). (3.36)

3.4.2 Freeze in Freeze out

Our Boltzmann equation has two terms : one which drives the theory away from ther-
mal equilibrium and one that drives towards it. However, note that they both depend on
temperature.

• σ is a function of relative and average speed which both depend on temperature.
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• The Hubble parameter is also a function of time and therefore a function of temper-
ature (remember that we treat time and temperature on the same footing during the
evolution of the universe).

There are two asymptotic regimes to be considered :

N =

{
≈ Neq Γ≫ H

∼ Neq(T∗)(
a(t∗)
a(t) )

3 H ≫ Γ
(3.37)

where T∗ is the temperature at which two effects are equal.
T∗ is also called the Freeze out or Freeze in temperature depending on whether Γ

H is
approaching 1 from below or above.

Remark. Note that at very late universe things always freeze out.

Let us now apply all the knowledge we gained in an example.

The electron-positron gas : We will consider the thermalization of electrons, positrons
and photons (γ) in the radiation domination era (a ∼ t1/2). The cross section of e+e− ⇔ γγ
can be computed using quantum electrodynamics which we take for granted :

σ =


1
2vπr

2
e v ≪ 1

m2
e

E2 πr
2
e log(

4E2

m2
e
− 1) v ≈ 1

(3.38)

where re =
α
me

, α = e2

4π and by E we mean the center of mass energy.
Now consider the different regimes :

• (T ≲ me ⇔ v ≪ 1)⇒ Ni = gi(mT )
3/2e−

m
T .

• (T ≫ me ⇔ v ≈ 1)⇒ Ni =
3
4
ξ(3)
π2 giT

3.

plugging in Γ :

Γ =< σNv >=

{
∼ r2e(meT )

3/2e−
me
T T ≲ me

∼ α2T T > me

(3.39)

where we ignored the log in the cross section as well as all order one constants.

Remark. Note that these limits agree when T ∼ me.

We know that the Hubble parameter’s relation to temperature is as :

H(T ) =
T 2

M0
. (3.40)

Now we can draw a diagram of both the Hubble parameter and Γ :
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We can find the freeze-in and freeze-out temperatures as follow :

Tin : α2T =
T 2

M0
⇒ Tin = α2M0 ∼ 1014GeV. (3.41)

For Tout, it needs a little more work :

Tout : r2e(meT )
3/2e−

me
T =

T 2

M0
. (3.42)

Now define : x = me

Tout
. Then we have :

e−xx1/2 =
me

α2M0
≈ 10−18, (3.43)

where numerically corresponds to x = 40. Therefore :

Tout ≈
me

40
≈ 10KeV. (3.44)

We can assume that photons are in thermal equilibrium, their number density scales as
Nγ ∼ a−3. This is consistent with the fact that their distribution stays thermal and only
their temperature varies.

Remark. The paramount aspect of all the above calculations is that the final density of
electrons and positrons is independent of the initial conditions!
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3.5 Recombination

In the early universe, atoms are highly ionized and there are a lot of free charges. This
means that this plasma is not transparent to photons. What we mean by this, is that before
the photon reaches the observer, it collides with another ion. So when does the universe
become transparent to photons? This happens only slightly after the eγ → eγ freezes out.

In general, at later epochs, the universe becomes transparent and the photons travel
freely (we can see stars from galaxies far far away!). The transition between the two epochs
is called recombination. Maybe it is not the most suited name since the ions are not
recombining, they are being combined for the first time. Be it as it may, it is called
recombination :). This is because at some stage, the temperature falls below the binding
energy of the Hydrogen atom, so it becomes favourable for them to form :

p+ e→ H + γ, (3.45)

where the binding energy is around I = 13.6eV ∼ 1.5× 105K.

Remark. Note that at around this time, all anti-matter has already annihilated (previously
we calculated that the electron-positron freeze-out happens at 10keV ).

Furthermore, after the ions form neutral atoms, photons propagate freely and the uni-
verse becomes transparent. The time-slice when the ”last” scattering occurs is called the
Last Scattering Surface. The CMB is a snapshot of the last scattering surface!

In more details, the number densities of each component follow Saha’s equation (assum-
ing thermal equilibrium) :

NeNp

NH
= (

meT

2π
)3/2e−

I
T . (3.46)

In order to derive Saha’s equation, we emphasize again that we assume thermal equilib-
rium. This is of course not the most precise way of modelling, but it turns out that the big
picture characteristics that we derive will remain intact.

Previously we derived the number density of fermions, therefore we have :

Ne = ge(
meT

2π
)3/2e−

me−µe
T ,

Np = gp(
meT

2π
)3/2e−

mp−µp
T ,

NH = gH(
meT

2π
)3/2e−

mH−µH
T ,

(3.47)

where ge = gp = 2 and gH = 4. Moreover, chemical equilibrium means : µp + µe = µH

(µγ = 0). Otherwise the reaction would change the distribution. Now we can compute
NeNp

NH
.

⇒ NeNp

NH
≈ (

meT

2π
)3/2e−

(me+mp−mH )

T , (3.48)

which is exactly Saha’s equation.
Our upcoming goal is to compute Γ =< σγNev >. Moving forward, we follow the

following logic : We assume that the plasma is in equilibrium and look for the temperature
of decoupling of Thompson scattering eγ → eγ. Note that this is a simplification. (For
a more in depth treatment, see Rubakov, Gorbunov vol I chapter 6) Nevertheless, let us

23



proceed. Neutrality of the universe implies np = ne. Substituting into Saha’s equation, we
get :

Ne =
√
NH(

meT

2π
)3/4e−

I
2T . (3.49)

Now we have to determine the number of baryons Np + NH = const. As we will see
soon, Np ≪ NH at the temperature of interest meaning that most atoms recombined.

Additionally, the ratio of Baryons to photons is a very important factor in cosmology.
It is given by :

η =
NB

Nγ
= 5× 10−10. (3.50)

Note that η is determined from various different data such as CMB, BBN, etc., we will
discuss it later. Moreover, the ratio of Helium to Hydrogen is 25% to 75% (determined by
BBN).

Now as for the cross-section, we have :

σγe =
8πα2

3m2
e

, σγp =
8πα2

3m2
p

. (3.51)

This is why only the electron Thompson scattering is relevant since the proton scattering is

suppressed by factors of proton mass. Now we will use H = T 2

M0
. Even though we will end

up in matter domination era and this formula was obtained for radiation domination era,
this is a good approximation.

Γ = H ⇒ B
T

9/4
∗

m
5/4
e

e−
I

2T∗ =
T 2
∗

M0
, (3.52)

where B = 8πα2

3

√
η( 2ξ(3)π2 )1/2( 1

2π )
3/4. To solve this equation, define x = I

2T .

⇒ x−1/4e−x = 1.2× 10−12 ⇒ x ≈ 27⇒ T ≈ 0.25eV ∼ 3000k. (3.53)

We know that the CMB temperature today is 2.73k. Therefore we have :

zdec. =
T∗

TCMB
≈ 1100. (3.54)

Remark. Compare with the above result that matter-radiation equation happens at z = 3000
and convince yourself that our previous approximations make sense.

3.6 Neutrinos

Neutrinos (ν) are very weakly interacting (at low energies) E ∼ 1MeV :

σν
σe
≈ 10−18. (3.55)

However, at early times, neutrinos were thermalized just like photons and then they decou-
pled. Following the same logic, there is also a surface of last scattering for neutrinos.

Remark. It is noteworthy that at some point, scientists guessed neutrinos to be candidates
for dark matter, but now we know it is not the case due to more precise measurements.
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Let us calculate the temperature and number density of neutrinos. Firstly, this is the
neutrino cross-section :

< σeνv >∼ G2
FE

2, GF ≈ 10−5GeV −2. (3.56)

Neutrinos are relativistic at decoupling but non-relativistic now (one of them might be
massless). Nevertheless, they are described by relativistic distribution even at late times.

⇒ Nν ∼ T 3 ⇒ Γ =< σνevN >∼ G2
FT

2T 3, H =
T 2

M0
, (3.57)

therefore we have T ν
∗ = (G2

FM0)
−1/3 ∼ 2MeV .

The effective temperature of neutrino distribution for now is :

Tν,0 = T ν
∗
a(T ν

∗ )

a(T0)
. (3.58)

Remark. This last equation is the reason why neutrinos have been ruled out as candidates
of dark matter.

Naively, one might say : Tν,0 = Tγ,0 = T 0
CMB . However, upon inspection we see that

this is not quite precise! The reason is because e+e− → γγ happens after T ν
∗ , so e

+e− → γγ
heats up photons! To compute how much this difference is, we can use entropy conservation
:

geγ∗ a3T 3 = const, (3.59)

where :

geγ∗ =

{
gγ + ge−,e+ = 2 + 7

8 (2 + 2) = 11
2 T ≫ me

2 T = T0
(3.60)

Therefore we have :

Tγ,0
Tν,0

= [
geγ∗ (T ∗

ν )

geγ∗ (T0)
]1/3 = (

11

4
)1/3 ≈ 1.4

⇒Tν,0 = 2k.

(3.61)

As a last word, we elaborate on the cosmological bound on Neutrino masses. Here, we
assume that neutrinos are non-relativistic. Note that this is just an assumption!

ρν,0 = mνNν,0,

Nν

Nγ
=

3

4

gν
gγ

(
Tν
Tγ

)3 ≈ 3

22
.

(3.62)

Note that the second equation is true for every neutrino species.

⇒ ρtotν,0 =
∑
i

mνi

3

22
Nγ,0 ≲ ρDM,0, (3.63)

where ρDM,0 is the dark matter abundance. Note that this is a very naive inequality, meaning
that we could do better in principle, but as a first approximation this is good enough.
Furthermore, we know that ργ ∼ T 4 and ρDM ∼ zeqργ with zeq ≈ 3000. Substituting all in,
we have : ∑

mνi ∼ 10eV. (3.64)
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A more detailed consideration would give :∑
mνi ∼ 0.2eV. (3.65)

Remark. It is important to note that historically, even the 10eV bound on the neutrino
mass was significantly better than the bound found using particle colliders!
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4 Big Bang Nucleosynthesis

Big bang nucleosynthesis (BBN) is the process of formation of light nuclei (H,He,D,Li, ...)
from protons and neutrons of the primordial plasma. It occurred at T ∼ 1− 0.1MeV . Note
that atoms form much later during and after recombination and all heavier elements are
formed even later in stars. As a result of BBN we get 75% Hydrogen, 25% Helium, and
∼ 2× 10−5 of Deutirium. These abundances are measured and as they depend significantly
on various parameters both from particle physics and cosmology such as ηB , g∗, ..., these
parameters get constrained.

Remark. These are the most primordial direct evidence we have from the universe. Basi-
cally, before this, anything could have happened, but afterwards, it must match these abun-
dances! This is actually a very powerful way of testing different ”beyond the standard model”
theories!

4.1 Neutron-Proton ratio, Freeze-out of Neutrons

Remember that mp ∼ mn = 1GeV,mn −mp = 1.3MeV . We can check when the reaction

p+ e→ n+ νe, (4.1)

will go out of equilibrium. Since this reaction is possible through weak interactions, T ∗ will
be close to that of neutrinos :

T ∗
ν ∼ (G2

FM0)
−1/3 ∼ 2MeV. (4.2)

A more concise calculation gives T ∗
n ∼ 0.8MeV .

Remark. This result is an incredible coincidence! The fact that T ∗
n and mn − mp are

comparable, is a complete coincidence! Note that one comes from strong interactions and
particle physics considerations, while the other one involves the Hubble parameter and the
Planck mass! Note that if this was not the case, all neutrons would decay and the universe
would only consist of Hydrogen. A very boring universe indeed!

Let us compute the abundances, assuming thermal equilibrium (neutrino’s just froze out
but they are still in thermal equilibrium). We have :

Nn ∼ e−
mn−µn

T , Np ∼ e−
mp−µp

T . (4.3)

Moreover, as we assumed thermal equilibrium, we have :

µp + µe = µn + µν . (4.4)

This gives :
Nn

Np
= e−

I
T +µe−µν

T . (4.5)

Furthermore, we assume that µν is small. We could have not used this assumption and kept
the chemical potential for neutrinos until the end of our calculations and then fine tune it
with observation, but since we know a priori that it is in agreement with observation, we
use this assumption as it makes calculations easier.
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For the electron chemical potential, we have :

µe

T
≈ Ne− −Ne+

Ne− +Ne+
≈ ηB ∼ 10−10. (4.6)

The reason for the first equality comes from the meaning of chemical potential as the ten-
dency for the reaction to move towards one side of the reaction. The second equality is
a consequence of neutrality of the universe, and the fact that at this epoch, electrons and
positrons are both relativistic and therefore have the same distribution as photons. We
finally have :

Nn

Np
≈ e−

mn−mp
T ≈ e− 1.3

0.8 ≈ 1

5
. (4.7)

Remark. Note that the timescale at which we are doing our computations (age of the
universe), is around 1 second. This is why neutron decay which has a time scale of 15
minutes can be ignored.

4.2 Nuclear reactions

The next step is to wait until nuclear reactions become important :

p+ n←→ D + γ,

D +D ←→ 3H + p; D +D ←→ 3He+ n,
3H +D ←→ 4He+ n,
3He+D ←→ 4He+ p.

(4.8)

By definition, the binding energy of an atom is :

I = Zmp + (A− Z)mn −M. (4.9)

As we will see, the important parameter would be IA
A :

IA
A

=



D 1.1MeV
3H 2.3MeV
4He 7MeV
12C 7.7MeV
26Fe 8.8MeV

(4.10)

It is important to note that Fe is the most stable atom in the periodic table.
The reactions active during BBN never produce 12C, but they produce 4He in which

most of the neutrons end up being. Before that however, Deuterium has to be produced.
Let us estimate when the following reaction gets shifted to the right (which means that it
is favourable to have Deuterium instead of just having protons and neutrons) :

p+ n←→ D + γ. (4.11)

For that, let us compute temperature at which abundance of Neutrons and Deuterium are
equal. This is very similar to what we already did for the CMB. The only conceptual

28



difference is that the CMB was done on the atomic level whereas here we are computing
parameters on the nuclear level.

NpNn

ND
= (

mpT

2π
)3/2e−

ID
T . (4.12)

Furthermore, we use the usual logic that Np ∼ ηBNγ ∼ 0.24T 3ηB . The point where we
have the reaction rate is equal to the Hubble rate, just like in the CMB, is called the TNS :

Γ(TNS) = H(TNS)⇒ TNS ∼ 70KeV. (4.13)

Now we face something different than the CMB. The CMB and the last scattering surface
do not happen at the same time. The CMB happens and after some time we have the
last scattering surface. The reason why we did not emphasize on this point in the past is
that there is really not very interesting physics happen in between the two. However, here
there are interesting things happening. This is because of the short lifetime of Neutrons!
Therefore from the 0.8 MeV to the 70 KeV temperature, which is around TNS ∼ 4 minutes,
we should account for decaying Neutrons. Therefore, at TNS ∼ 70KeV , the Neutron-Proton
ratio is :

Nn

Np
∼ e−

I
T∗
n × e−

TNS
τn ≈ 1

7
, (4.14)

where τn is the Neutron decay time-scale. This means that from the time that Neutrons
froze out until the time which Deuterium production becomes relevant, we lost some of
the Neutrons due to decay. Now, we are ready to start calculating the Helium abundance
assuming equilibrium.

Remark. Note that e
− I

T∗
n = 1

5 . Therefore by what we did, it is implied that BBN is actually
sensitive to the difference of 5 and 7!

Remark. At this point, you might be confused as we are ignoring some processes while
cherry-picking some other. This is only due to some combination of importance plus easiness
of computation.

4.2.1 4He Abundance

Define xA = ANA

NB
where NB is the number density of Baryons. Therefore, by definition we

have : ∑
A

xA = 1. (4.15)

Now, as we saw that the nuclear binding energy per nucleon is largest for 4He (amongst
the considered reactions of Hydrogen, Deuterium, Tritium and Helium) and considering the
fact that the number of protons is higher than the number Neutrons by a factor of 7, all
Neutrons end up in Helium. Therefore, we have :

N4He =
1

2
Nn. (4.16)

This approximation is justified as we already see in experiment that the next highest abun-
dance is Deuterium which is suppressed by a factor of 10−5.
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⇒ x4He =
4N4He

Np +Nn
=

2. 17
1 + 1

7

≈ 25%. (4.17)

Now, let us do the same calculation a bit more carefully. Since we are assuming that all
reactions are at equilibrium :

µA = Zµp + (A− Z)µn. (4.18)

Our assumption of equilibrium here means that we are basically considering only one reaction
that Z protons and (A− Z) neutrons are all combined in one reaction to form the desired
nuclei. Therefore, a modification of Saha’s equation will be :

NA = (Np)
Z(Nn)

A−Z(
1

mpT
)

3
2 (A−1)e

IA
T . (4.19)

Moreover, we write :
NB ≈ ηBT 3 ≈ Np, (4.20)

where we disregarded the 1
7 ratio of neutrons. Again using the definition of x, we have :

xn = x
1
2
4Heη

−3/2
B (

T

mp
)−9/4e−

I4He
T . (4.21)

Again, remember that as we know that Helium has the highest abundance, we expressed
only in terms of Helium.

Now, had we used the same logic for a general element instead of neutrons, we would
have gotten :

xA = [ηB(
T

mp
)

3
2 ]

3
2 z−

1
2A−1exp(

IA − I4He(
A−Z

2 )

T
). (4.22)

Now the sign of the exponent is determined by the following expression :

IA
A− Z

− I4He

4− 2
, (4.23)

which is why we mentioned before that it is the binding energy per nucleon that matters as
opposed to the binding energy itself. Here we found out that it is actually the binding energy
per neutron which matters. It is actually a coincidence that both for the binding energy per
nucleon and per neutron, 4He has the maximum value between the light elements. Here is
the values for the binding energy per neutron (compare with the binding energy per nucleon
which was given before) :

IA
A− Z

=



D 2.3MeV
3H 4.2MeV
3He 7.7MeV
4He 14.2MeV
6Li 10.6MeV
12C 15.4MeV

(4.24)

Moreover, note that we are now working at temperatures of around 70KeV , whereas the
binding energies are of 1MeV , therefore, their abundances are very small! For example, if
we plug in Deuterium into this formula, we get xD ∼ e−120. This result is of course absurd
because if this was the case, we would never measure any Deuterium in the universe! The
actual result is around e−10 which is measurable. We will now compute this abundance by
considering departures from thermal equilibrium.
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4.2.2 Abundance of Deuterium

Deuterium production process :

p+ n↔ D + γ. (4.25)

Deuterium destruction (burning) :

D +D ↔ 3He + n

D +D ↔ T + p
(4.26)

The point of this out of equilibrium calculation is that Deuterium freezes out before it
all burns. Following the same logic of before :

dND

dt
+ 3HND = − < σvND > ND. (4.27)

It is noteworthy that we are working in the regime were :

Neq
D ≪ ND ≪ N4He. (4.28)

Now we have :

σv = 3× 10−17 cm
3

s
, T ∼ TNS . (4.29)

As usual we consider the case where H ≈ Γ.

H =
T 2

M0
≈ σvND, Np = ηBT

3. (4.30)

⇒ ND

Np
=

1

σvηBM0TNS
≈ 10−5. (4.31)

Remark. We have arrived at a very interesting observation. The fact that Deuterium
abundance is inversely proportional to the baryon to photon ratio is actually one of the ways
that we can fix ηB observationally.
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5 Baryogenesis

Baryogenesis is the term pointing the process responsible for the obvious difference in the
number of baryons and anti-baryons. There is no known process (such as BBN or CMB)
which is responsible for this. However, there are several conjectures about how it happened.

Most often, people assume an initial state of symmetry under baryon↔ anti-baryon and
it is the evolution which produces the asymmetry nB > nB̄ . We should bear in mind that
this is in fact also an assumption. What happens is that most of the B and B̄ annihilate
leaving :

nfinalB = ∆n. (5.1)

Note that since below T ∼ 100GeV baryon symmetry is a good symmetry (meaning that
it is conserved), we do not need to worry about nB changing after that.

Remark. Note that the reason behind ηB ≪ 1 is actually Baryogenesis as well. Almost all
baryons and anti-baryons collide and turn into photons which makes the baryon to photon
ratio very small. In equations we mean :

[T ≫ 1GeV : NB ∼ NB̄ ∼ Nγ ∼ T 3]⇒ ∆n

nB
∼ ηB ∼ 10−10. (5.2)

Figuratively :

Sakharov’s Conditions : For baryogenesis it is necessary to have :

• Baryon number violation

• Departure from thermal equilibrium

• Violation of C and P.

By C, P and T we mean :

• P : x⃗→ −x⃗
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• T : t→ −t

• C : B → −B̄

CPT is an exact symmetry which implies that masses of particles and anti-particles (as
well as their interactions) are the same. Notably, each of these individual symmetries are
broken. However, breaking of CP (or equivalently T) is weaker than that of just C or P.
(This observation was first made through Kaon decay)

Interestingly, the Standard model of particle physics has all of the ingredients in Sakharov’s
condition! The problem lies in the fact that the effect is too small. This is because Baryon
number violation is a non-perturbative effect (just like quantum tunneling in ordinary quan-
tum mechanics called Sphaleron). These non-perturbative effects happen such that :

Γ ∼ e−
Esph

T , Esph ∼ 100GeV. (5.3)

This process is in thermal equilibrium until T ∼ 100GeV . Moreover, B-L is an exact
symmetry in the standard model. Therefore, if B asymmetry is generated at times earlier
than 100 GeV, one needs to create a B-L asymmetry, otherwise sphalerons will erase just B
asymmetry. Usually this is done by adding heavy particles that decay in ways which B-L
is not kept invariant. Another way is to generate asymmetry just with particles from the
standard model. (This idea although very elegant does not seem to work)

ElectroWeak Baryogenesis : The main problem is to satisfy the 2nd Sakharov condi-
tion. If the Electroweak phase transition was of first order, there would be enough deviation
from thermal equilibrium :

The Sphaleron process (mentioned above) could generate B asymmetry (creating some L
asymmetry). The reason why this does not work is because the ElectroWeak phase transition
turns out to be of second order.
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6 Dark Matter

In this section, we will explain the reasons why we believe dark matter exists and the
candidates we have for them.

6.1 DM Existence

How do we know there is dark matter? FRW evolution of the universe tells us the total
amount of matter, and we can also measure the amount of Baryons because they interact
through the standard model (basically it is because they are visible).

Historically, it happened through a more direct observation. The rotation curves of stars
in galaxies (this can be done because most baryons are in the stars and we can see them).
Baryon distribution is observed to be :

IB = I0exp(
r

r0
) (6.1)

Using basic Newtonian dynamics and gravity we have :

mv2 ∼ GMm

r

⇒ v ∼ 1√
r
.

(6.2)

Remark. Note that this Newtonian limit should be considered for the case of r ≫ r0.

However, the velocity profile is observed to be :

v ∼ const. (6.3)

This means that in case we do not consider any modified theory of gravitational dynamics,
we must have M ∼ r which suggests ρdark ∼ 1

r2 . Furthermore, from observation we have :

ρdark(r) =
r2c

r2 + r2c
. (6.4)

Additionally, gravitational lensing allows to measure the total mass of distant galaxy clusters
which is consistent with other dark matter proportion relative to other tests.
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Remark. One of the most important constraints on dark matter comes from ”Bullet clus-
ters”. It heavily restricts the self interaction of dark matter.

All in all, our entire data from BBN, CMB and the Large Scale Structure (LSS) point
to the same approximate amount of dark matter. Therefore, we state that we have ob-
servational evidence from very different physical effects and cosmological epochs! This is
the reason behind the fact that we do not think the answer to the dark matter conundrum
comes from modified gravity.

6.2 Dark Matter Candidates

6.2.1 Neutrino Dark Matter

Dark matter should be stable and very weakly interacting. By weakly interacting we mean
with ordinary matter and also with itself, from our observations on bullett clusters. Our
first guess would come from the only particle of the standard model satisfying these two
conditions which are Neutrinos.

In order to further investigate this candidate, note that Neutrinos are fermions. There-
fore by Pauli exclusion principle, we know that the total number of neutrinos are less than
the available phase space :

Nν ≤
1

(2π)3

∫
d3pd3xn ∼ p3r3. (6.5)

Furthermore, we can substitute p = mv,Mν ≲ mνNν ∼ m4
νv

3r3, whereMν is the total dark
matter mass if neutrinos are dark matter and mν is the neutrino mass.

⇒ v2 ≲
GMν

r
⇒ mν ≳ (

1

Gvr2
)1/4 = 120eV (

100km
s

v
)1/4(

1kpc

r
)1/2 (6.6)

For our own galaxy we have v ∼ 220km
s and rc ∼ 10kpc. Therefore, we have mν ≳ 30eV

which is inconsistent with the neutrino mass we found in earlier chapters (0.2 eV). If we
calculate the same mass constraint for dwarf galaxies we find mν ≳ 300eV !

Remark. Our calculations mean that any fermionic dark matter must satisfy the same
mass bound.

Similar considerations for bosonic dark matter gives a much less restrictive bound as our
approximation comes from the fact that the Compton wavelength cannot be larger that the
halo radius :

λc =
ℏ
mc

≲ rc ⇒ mb ≳ 10−20eV. (6.7)
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6.2.2 Axion Dark Matter

The next candidates are QCD Axions. This candidate is interesting as it is not only used
to explain dark matter but also strangeness of other phenomena.

In the standard model of particle physics, there is a strange occurrence of very little CP
violation in QCD and relatively large CP violation in the electroweak sector. The addition
of Axions somehow solves this problem as Axions violate CP themselves. Due to various
experiments (including the Axion Dark Matter eXperiment (ADMX)), Axions can have a
mass in the range :

10−11eV ≤ mA ≤ 10−2eV. (6.8)

Axions are also very weakly interacting which makes them a suitable candidate for dark
matter while posing challenges to experimentally measuring them. Axions can also be dark
matter if mA ≲ 10−5. We will further explain where these results come from. The potential
for the Axion is :

VA|T=0 = −Λ4
QCD(cos (

A(x⃗, t)

fA
) + 1) ∼ m2

AA
2, (6.9)

where ΛQCD is the QCD mass scale, A(x⃗, t) is the Axion field, fA is some constant and

mA =
Λ4

QCD

f2
A

. We also believe that fA ≲ MPl and therefore we have mA ≥ 10−11eV .

Furthermore, if fA becomes smaller, the potential becomes more significant and therefore
from experiment we should have had seen Axions and the fact that we did not dictates that
mA ≤ 10−2.

Moreover, Axion mass has a complicated T-dependence at T > ΛQCD. Ignoring this
subtlety we can estimate it :

ΩA = (
10−6eV

ma
)θ2i , (6.10)

where θi =
Ai

fA
≲ π.

When we have T ≫ V 1/4, the Axions fill the universe with random values. When Hubble
parameter drops below mA, Axions become non-relativistic particles. At this point, the
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Axion starts oscillating in the harmonic like potential.

H =
T 2

M0
, H(Tosc) = mA, ρa ∼ V = m2

Af
2
Aθ

2
i .

⇒ nA|i =
ρA
mA

=
T 2
osc

M0
f2Aθ

2
i ,

⇒ nA,0 = na,i

(
T0
Tosc

)3

= T 3
0

f2Aθ
2
i

M0Tosc
,

⇒ ρA,0 = mAT
3
0

f2A
M0Tosc

θ2 = T 3
0

Λ4
QCD

M
3/2
0 m

3/2
A

θ2,

(6.11)

where Tosc =
√
M0mA and fA =

Λ4
QCD

m2
A

. For θ ∼ 1 and mA ∼ 10−6eV , the Axion can be

dark matter.

Remark. Note that this does not mean that in order for Axion to be dark matter it must
have a very fine tuned mass. By choosing a different initial θi, this can be compensated.

6.2.3 Weakly Interacting Massive Particle (WIMP)

The first thing to mention about this candidate is that it is supposed to interact through
the electroweak force, though with no charge. It also has the natural production mechanism
called the freeze out production mechanism. More or less, the idea is to have fermionic
particles like neutrinos which are heavier and stable. The idea is to have processes where
(X + X̄ ↔ SM particles) but there are no process where X decays into standard model
particles. As usual in our calculations of freeze out processes, we have :

Γx = ⟨σNxv⟩ ∼ H

⇒ Nx = gx

(
MxT

2π

)3/2

e−Mx/T ,

⇒ Tfreeze−out =
Mx

log gxMxM0σ0
,

(6.12)

where you should note that we do not have any specific formula for the cross section, but
as we assume that the process is going to take place through the electroweak channel, it is
of the order of the Fermi’s interaction constant. Furthermore, define σ0 = σv.

Nx(t0) = Nx(tf )
a3(tf )

a3(ti)
∼ Nx(tf )

T 3
γ

T 3
f

⇒ Ωx =
Nx(t0)Mx

ρcritical
∼
T 3
γ

T 3
f

Hfreeze−out

σ0

=
T 3
γ

Tf

Mx

M0
=
T 3
γ

M0

log (M0Mxσ0)

σ0
∼ 10−10GeV

2

σ0
log (M0Mxσ0),

(6.13)

with σtyp.
0 ∼ 10−10( E

GeV )2.
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6.2.4 Primordial Black Holes

It could still be that dark matter is not a new particle but is made of primordial black
holes. This model was almost observationally excluded until the detection of gravitational
waves which renewed some interest in the field. It is thought that there were these black
holes during the inflationary perturbation era which we will discuss later and they clumped
together and formed dark matter.

Remark. Note that as we have seen during this section, dark matter can be things of very
different nature! Very small fermionic particles, huge bosonic fields, primordial black holes
or WIMP! The reason behind this fact is that although we have a lot of evidence from very
different scales, i.e. cosmological scales, galaxy clusters, and ..., but as we do not have any
laboratory experiments involving dark matter, non has been completely ruled out.
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7 Inhomogeneous Universe

Up until now, all we have done was in the homogeneous background. In this section, we
will use a more realistic approach using cosmological perturbation theory. For a complete
version of the derivations refer to Gorbunov and Rubakov. The reason is that of course
at short distance scales δρ(x⃗)

ρ0(t)
∼ 1. Note that here by ρ0(t) we mean the homogeneous

background which is independent of position and by δρ(x⃗) we mean the fluctuations around
this background. We will repeat these definitions when we start linearized theory. The
basic idea is that perturbations grow from some ”seed” or primordial perturbation where
δρ(x⃗)
ρ0(t)

≪ 1. This idea is directly confirmed from recombination where δρ(x⃗)
ρ0(t)

∼ 10−5. Putting

all of the discussion, we see that the full treatment of perturbations requires general relativity
and matter perturbations.

7.1 Jean’s Instability

We first start by using Newtonian gravity and dynamics as a toy model. To further simplify
the problem, we consider a non-expanding universe. We have three main equations namely
the Poisson, continuity and Euler’s equation :

∇2ϕ = 4πGρ,

∂ρ

∂t
+ ∇⃗.(ρv⃗) = 0

dv⃗

dt
+ (v⃗.∇⃗)v⃗ = −1

ρ
∇⃗P − ∇⃗ϕ.

(7.1)

The first two are of course very familiar to you. We provide further motivation for the
form of the Euler’s equation which is basically Newton’s second law.

F = ma

F = Fgrav. + Fpressure = −
∫
dV (ρ∇⃗ϕ+ ∇⃗P )

dv⃗

dt
=
∂v⃗

∂t
+
∂v⃗

∂x

∂x

∂t
+
∂v⃗

∂y

∂y

∂t
+
∂v⃗

∂z

∂z

∂t
.

(7.2)

The second equation is just the usual form of force in integral form. The intuition behind
the last equation comes from the fact that the acceleration of the fluid is not only due to
the movement of each element, but also the movement of clumps of the fluid in general.
Putting these altogether, we arrive at Euler’s equation. Our next step is to linearize around
the homogeneous background.

ρ(x⃗, t) = ρ0(t) + δρ(x⃗, t),

P (x⃗, t) = P0(t) + δP (x⃗, t),

v⃗(x⃗, t) = v⃗0(t) + δv⃗(x⃗, t),

ϕ(x⃗, t) = ϕ0(t) + δϕ(x⃗, t).

(7.3)

Remark. Remember that we are still in the non-expanding background, so we have H =
0, v⃗0 = 0, ρ0 = const. We will see in the future that expansion will actually slow down the
growth of perturbations.
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The linearized equations are :

∇2δϕ = 4πGδρ,

∂δρ

∂t
+ ∇⃗.(ρ0δv⃗) = 0

dδv⃗

dt
+

1

ρ0
∇⃗δP + ∇⃗δϕ = 0.

(7.4)

Furthermore, define v2s = δP
δρ as the speed of sound squared. Taking the time derivative

of the second and the divergence of the third equation in eq.(7.4) and subtracting we get :

∂2

∂t2
δρ− v2s∇2δρ− 4πGρ0δρ = 0. (7.5)

Let us first check the plane wave solutions of this equation, i.e. δρ = Aei(kx−ωt).

⇒ ω2 = v2sk
2 − 4πGρ0. (7.6)

We see that if k <
√
4πG 1

vs
, then ω is imaginary and therefore, solutions grow or decay

exponentially. The critical wavelength is :

λs =
2πvs√
4πGρ0

. (7.7)

If λ > λs, the solution becomes unstable. This phenomena is called Jean’s instability.

7.2 Linearized General Relativity

First we would like to point out a few tips about what we are about to do in this subsection.

• We use the linearized Einstein equations around the FRW background (We will mostly
do calculations in momentum space as it will make calculations easier just like in the
Jean’s instability case).

• It is important to distinguish λ > rH and λ < rH (rH is the cosmological horizon).

• It is important to keep track of growing modes.

• We remind that prior to CMB, there are only oscillations around the homogeneous
background.

• After recombination (matter domination) growth is most important and the large scale
structures start to form.

Before moving on to the perturbative parameters, we review the background ingredients
once more. The FRW conformal time is defined as :

a(η)dη = dt,

ds2 = a2(η)(−dη2 + dxidxi).
(7.8)

From here on, we will denote differentiation w.r.t regular time with dots and w.r.t. conformal
time with primes. Using this definition, we have :

H =
ȧ

a
=
a′

a2
. (7.9)
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The Friedmann equations are :

a′2

a4
=

8πG

3
ρ,

2a′′

a3
− a′2

a4
= 8πGP,

ρ′ = −3a
′

a
(P + ρ).

(7.10)

Moreover, the solutions for different epochs are :

a(η) =


cη = t1/2 Radiation Domination

cη2 = t2/3 Matter Domination

− 1
Hη = eHt Dark Energy Domination

(7.11)

For different sectors :

ΩDM = 0.22, ΩBaryons = 0.04, ΩΛ = 0.73, Ωcurvature < 0.01. (7.12)

Moreover, the matter-radiation equation happens at z ≈ 3000. Additionally, we had :

H = H0

√
ΩΛ +Ωm(1 + z)3 +Ωrad(1 + z)4

⇒ η =

∫ ∞

z

dz′

a0H0

√
ΩΛ +Ωm(1 + z′)3 +Ωrad(1 + z′)4

(7.13)

Calculating numerically yields :

ηrecomb.

ηmat.rad.eq.
≈ 2.4,

η0
ηmat.rad.eq.

≈ 1.2× 102,
η0

ηrecomb.
≈ 50. (7.14)

Now, we further define the perturbative variables in a useful manner. Note that from here
on, we will use the mostly plus convention for the Minkowski metric, η = diag(−1, 1, 1, 1).
Suppose we have :

ds2 = a2(η)γµνdx
µdxν . (7.15)

Therefore, γµν is the full metric. As we are doing perturbations around the FRW metric,
we write :

γµν = ηµν − hµν . (7.16)

As we are doing perturbation theory, we assume |hµν | ≪ 1.
Furthermore, the energy-momentum tensor is written as :

Tµ
ν = T̄µ

ν(η) + δTµ
ν (7.17)

Upon these definitions, the Einstein field equations and the energy-momentum conservation
for perturbations are :

δGµ
ν = 8πGδTµ

ν ,

δ(∇µT
µν) = 0.

(7.18)

Remark. Note that in perturbation theory, in our formulation of the metric, we raise and
lower indices using the Minkowski metric η. For example :

hµν = ηµλhλν . (7.19)
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The tensor inverse to γµν is γµν = ηµν + hµν . Therefore, we have :

gµν =
1

a2
(ηµν + hµν). (7.20)

In addition, we must do our gauge fixing (the gauge here refers to diffeomorphism in-
variance). We note that as we are doing linear perturbation theory, it is enough to restrict
ourselves to linear diffeomorphisms.

gµν(xρ)
ζ−→ g̃µν(xρ) = gµν(xρ − ζρ) +∇µζν +∇νζµ.

hµν(xρ)
ζ−→ h̃µν(xρ) = hµν(xρ) + ∂µζν + ∂νζµ + 2ηµνζλ

∂λa

a
.

(7.21)

We fix three out of the four gauges for now as :

h0i = 0. (7.22)

Shifting our attention to the energy-momentum tensor, we will again take the ideal fluid
approximation.

Tµν = (ρ̂+ P̂ )uµuν + P̂ gµν ,

ρ̂ = ρ(η) + δρ,

P̂ = P (η) + δP.

(7.23)

In our next step, we would like to use the relativity constraint on the 4-velocity, u, to express
it in terms of the 3-velocity. In the rest frame, we have ū0 = 1

a , ūi = 0.

gµνu
µuν = −1

⇒u0 =
1

a
(1 + δu0), ui =

1

a
vi

⇒− (1 + h00)(1 + δu0)2 = −1 +O(vivi)

⇒2δu0 = −1

2
h00 ⇒ u0 =

1

a
(1− 1

2
h00)

⇒u0 = −a2(1 + h00)u
0 = −a(1 + 1

2
h00)

(7.24)

Note that vi is itself first order in perturbations. Notice the convenience that our gauge
choice has brought us!

Remark. Let us pause and see our results up until now. Our final result is not Lorentz
invariant! This was actually expected as we are doing perturbation around a fix background.
However, as we did perturbations around the FRW and chose our gauge fixing in a rota-
tionally invariant way (because h0i acts like a vector under rotations), we are still left with
translational and rotational invariance.

Now we can write the energy-momentum tensor as :

δT 0
0 = δρ,

δT 0
i = (ρ(η) + P (η))vi,

δT i
j = δρδij .

(7.25)
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We are finally in a position to write the energy-momentum conservation equation linearly
in perturbation :{

δρ′ + 3 3a′

a (δρ+ δP ) + (ρ+ P )(∂ivi − 1
2h

′) 0 component

∂iδρ+ (ρ+ P )(4a′

a vi +
1
2∂ih00) + (vi(ρ+ P ))′ = 0 i component

(7.26)

where h = hii is the trace of the spatial part of the hµν tensor.
Before we can derive linearized Einstein equations, we need to use symmetries (trans-

lational invariance), here we mean global symmetries, to go to momentum space. We will
further use rotational symmetries to further simplify our calculations.

Momentum space :

hµν =

∫
d3keikxhµν(k, η),

δρ =

∫
d3keikxδρ(k, η),

δP =

∫
d3keikxδP (k, η),

δvi =

∫
d3keikxδvi(k, η).

(7.27)

Therefore we have ∂i ∼ iki.

Remark. Remember that the physical momentum is q(η) = k
a(η) .

Remark. It is important to understand why it is convenient to go to momentum space.
As we are doing linear perturbation theory and our background metric is translational in-
variant, different modes (different k’s) do not get mixed! That is why it is easier to do the
computations in momentum space.

Now consider some k⃗. We still have further symmetries involving rotations around k⃗.
This SO(2) symmetry means that different sectors (scalars, vectors and tensors) do not get
mixed! 

δρ, δP, vi ∼ k, δij , ki.kj , h = hii Scalars

vTi : vTi .ki = 0 Vectors

Traceless transverse part of hij Tensors

(7.28)

Therefore, we break hij as follows :

h00 = −2ϕ,
hij = −2ψδij − 2Ekikj + i(kiW

T
j + kjW

T
i ) + hTij ,

(7.29)

where ϕ is basically the Newtonian potential. Also we have : vi = vTi + ikiv.
In these notes, we only derive the equations in the scalar sector as they are the most

interesting ones. We also fix the only gauge left. We should be careful to chose a gauge
which is consistent with our previous gauge.

ζi = −∂iσ, ζ0 = ∂ησ

⇒h̃ij = hij − ∂i∂jσ − 2
a′

a
δijσ

′.
(7.30)

43



We can use this gauge to kill the E term in hij in eq. 7.29. Finally, since we are only
considering the scalar part :

ds2 = a2(η)(−(1 + 2ϕ)dη2 + (1 + 2ψ)dx⃗ 2). (7.31)

In this gauge, the Einstein field equations (to linear order) in the scalar sector are :

ψ = −ϕ,

∇2ϕ− 3
a′

a
ϕ′ − 3

a′2

a2
ϕ = 2πGa2δρtot,

ϕ′ +
a′

a
ϕ = −4πGa2[(ρ+ P )v]tot,

ϕ′′ + 3
a′

a
ϕ′ + 2

(
a′′

a
− a′2

a2

)
ϕ = 4πGa2δρtot,

(7.32)

where the tot index means that all different matter components should be considered such
as DM, DE, and radiation. We also have the energy-momentum conservation. We note
that as we do not consider the interaction between the different matter components, these
equations can be considered for each matter component individually :

δρ′λ + 3
a′

a
(δρλ + δPλ) + (ρλ + Pλ)(∇2v − 3ϕ′) = 0

((ρλ + Pλ)vλ)
′
+ 4

a′

a
(ρλ + Pλ)vλ + δρλ + (ρλ + Pλ)ϕ = 0.

(7.33)

Of course these equations follow from the Einstein equations but they are useful in this
form, that is why we stated them as well. Our final equation is the equation of state :

δPλ = u2sλδρλ, (7.34)

where usλ is the speed of sound of the λ matter component.

Subhorizon-Superhorizon modes

We open a subject in this part that we shall use its terminology in the following sections.
We call a particular mode k⃗ a superhorizon mode if we have:

q(η) =
k

a(η)
≪ H(η). (7.35)

Similarly, we call a particular mode k⃗ a subhorizon mode if we have :

q(η) =
k

a(η)
≫ H(η). (7.36)

Note that the subhorizon and superhorizon refers to the wavelength, e.g. a small k⃗ has large
wavelength. Now if we consider a decelerating FRW universe a < ct, e.g. a ∼ t1/2 or t2/3,
whereas H ∼ ȧ

a ∼
1
t . Therefore, q

H grows as time evolves. Therefore, modes enter the
horizon (see the figure below). Of course by the same logic, the opposite happens for an
accelerating universe.
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Back to Perturbations

Furthermore, by subtracting the Einstein field equations we will have :

ϕ′′ + 3
a′

a
ϕ′(1 + u2s) + [2

a′′

a
− a′2

a2
(1− 3u2s)]ϕ+ u2sk

2ϕ = 0. (7.37)

Note that the above equation looks like a wave equation (the first and last term) alongside
a friction term (the second term) due to the expansion of the universe. Moreover, define
usH

−1 as the sound horizon (the distance travelled by sound since the Big Bang).
Furthermore, if we restrict ourselves to only a single component fluid, we know that in

the background we have P = ωρ and ω = u2s. Using Friedmann equations we have :

−8πGa2(P − u2sρ) = 0. (7.38)

Therefore, the equation further simplifies to :

ϕ′′ + 3
a′

a
(1 + u2s)ϕ

′ + u2sk
2ϕ = 0. (7.39)

Now if we take λ≪ usH
−1 :

ϕ′′ + 3
a′

a
(1 + u2s)ϕ

′ = 0

⇒ϕ′′ + c

η
ϕ′ = 0.

(7.40)

Therefore, there are two different solutions.

ϕ = const, ϕ = η1−c. (7.41)

Note that as c > 1, the non-constant solution dies as η →∞. That is why we only consider
constant answers to be of importance. Therefore, the modes are all constant before they
enter. We can also see that longer modes enter the horizon later in time.
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Let us focus on density perturbations. Define δ = δρ
ρ . Note that this parameter is easily

accessible through observations. We have :

−3a
′2

a4
ϕ = 4πGa2δρ. (7.42)

Again using Friedmann equation : a′2

a4 = 8πG
3 ρ, we get δ =const.

Relativistic Matter

In radiation domination we have a ∼ η and for relativistic matter we have ω = u2 = 1
3 .

⇒ ϕ′′ +
4

η
ϕ′ + u2sk

2ϕ = 0. (7.43)

Motivated by what we found in the previous part, we take the following as our initial
condition. Therefore, the solution is :

ϕ(η) = −3ϕi
1

(uskη)2

[
cos (uskη)−

sin (uskη)

uskη

]
(7.44)

We see that in the kη → 0 limit, we get ϕi and in the kη → ∞ limit we get ϕi(k) cos (uskη)
(uskη)2

.

Now at lagre k, we can use the Einstein equations eq.7.32 and only take the dominating
term (k2ϕ) :

δρ = − 1

4πG

k2ϕ

a2

⇒δrad =
δρrad
ρrad

= 6ϕi cos (uskη),

(7.45)

which is an oscillatory solution. This means that theere is no Jean’s instability in this case.

Remark. Note that if you do the same calculations for the subhorizon modes in radiation
domination for non-relativistic matter, you will see a logarithmic growth.

Non-relativistic Matter

In this case, we have :

ϕ′′ + 3
a′

a
(1 + u2s)ϕ

′ + u2sk
2ϕ = 0, (7.46)

but as us = 0, we get :

ϕ′′ + 3
a′

a
ϕ′ = 0. (7.47)

Note that in this case modes are always superhorizon as the term which could dominate for
k → ∞ is always zero! So we get a constant and a decaying mode but again we only need
to consider the constant mode. Again using the Einstein equation :

δρ = − 1

4πGa2
(k2 +

12

η2
)ϕ. (7.48)

Furthermore, remember that we have ρ ∼ 1
a3 .

⇒ δsubhorizonmatter ∼ a⇒ Jean’s Instability! (7.49)
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Remark. Note that here by subhorizon we mean the cosmological horizon as there is no
notion of sound horizon!

Remark. note that when the other term dominates, it is confirmation of our previous result
that δ is constant!

The linear growth that we found here is the seed of all the structure that we see in the
universe. This computation is most relevant for dark matter modes that enter the horizon
at or after matter-radiation equality.

Up until now we did not talk about the size of ϕ. Many different observation lead to
ϕi ∼ 3× 10−5 and as we have a0

aeq
∼ 3000, we get δ ∼ 0.09 and if done more carefully, you

get δ ∼ 0.03. Now we should ask, what type of mode are these?

kηeq. = 1, q =
keq.
a0

=
1

a0ηeq.
. (7.50)

We know that a0η0 is roughly the size of the universe, 1.4× 104 Mpc.

⇒ λ =
2π

q
∼ 750Mpc. (7.51)

Therefore the universe is still dominant linearly on those scales!
If we now move on to multi-component fluid, we get what is called the adiabatic mode

and the Isocurvature modes. The adiabatic mode is exactly what we saw in the single
component case which originate from some ϕi. However, in the single component case, the
adiabatic mode was forced upon us by Einstein equations. In the multi-component instance,
it could have been the case that there was no initial ϕi and the different δρλs created the
deviations. It turns out that even in the multi-component version, we only have the adiabatic
modes! The isocurvature modes have been bounded by experiment to be below 1 percent.

Remark. Note that the fact that we name adiabatic modes as modes which start from some
ϕi is a gauge dependent statement. This means that this is only true in our conformal
Newtonian gauge.

7.3 CMB Fluctuations

This is seemingly the most complicated part of these lectures. It is told to be one of the
greatest predictions of theoretical physics! It was observed in experiment in the last few
decades. We sketch the computations of this part. You can find a more detailed computation
in chapter 9 of Gorbunov and Rubakov book.

Remember that baryons and photons were tightly coupled before recombination. Fur-
thermore, their perturbations follow :

δ = 6ϕi(k) cos (uskη). (7.52)

At recombination, photons decouple and from then on they fly towards us. Basically, they
are free electromagnetic waves which are only impacted by the expansion of the universe.

Remark. Note that even at this point we are not being perfectly rigorous as the gravitational
potentials alter the way the photons are redshifted but we can ignore this subtlety for now.
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Additionally, photons coming from different angles have different temperatures.

δTγ
Tγ

(θ) ∼ 1

4
δBγ +Φ+ . . . (7.53)

Where dots stand for other effects like Doppler shift, integrated Sachs-Wolfe effect, which
turn out to be subleading at the scales of the first few CMB peaks that we will focus on.

This is the picture to have in mind where our observations happen at the point in the
top.

It turns out that we can predict these fluctuations in momentum space and it looks something
like this :

The actual plot is this [2]:
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Basically, the bumps you see in the above plots are consequences of eq.7.52. The ϕi(k) are
called the primordial spectrum which we have not yet talked about (the initial conditions).

At η = ηr, some k’s are excited and some are not. We have:∫
eikx(θ) sin (2πlθ)dθ

⇒Peaks : usknηr = nπ ⇒ k =
nπ

usηr

⇒∆xn =
2π

kn
=

2usηr
n
⇒ ∆θ =

∆x

η0 − ηr
∼ ∆x

η0
, l =

2π

∆θ

⇒l = nπ
√
3
η0
ηr
≈ 300n.

(7.54)

We can see from the data that the difference between consecutive peaks are actually 300
as well which agrees with the above computations. Had we wanted to get a more precise
result, we could have considered the Legendre polynomials and acquired a more accurate
description.

For Gaussian random fields we have :

⟨δk1δk2⟩ = δ(k⃗1 − k⃗2)P (|⃗k|). (7.55)

These are random but correlated (average over modes with the same |⃗k| and different angles)

and they produce the plot sensitive to P (|⃗k|). It is also sensitive to Ωm,ΩB ,ΩΛ and Ωc.
So far, we have discussed evolution of initial conditions from Big Bang singularity until the
period when they can be observed. Result of observations show that :

P (|⃗k|) = 10−5

(
k∗
k

)3+(ns−1)

, (7.56)

where ns ≈ 0.96. This shows a couple of points :

• perturbations are small and approximately Gaussian.

• They are correlated on superhorizon scales.

• They have a relatively simple power spectrum.

Moreover, this does not look like a generic ”Big Bang” and suggests to look for a simple
theory that proceeds the Big Bang. The most popular candidate is Inflation.
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8 Inflation

Inflation is a theory for initial conditions that naturally explains the P (power spectrum)
that is observed. It is a period of quasi-exponential expansion before the Big Bang. There
are numerous microscopic realizations of inflation that lead to similar observations. We
will discuss a particular model called single field slow-roll inflation, first in the homogeneous
background and then in perturbations. Finally we will show that quantum mechanics creates
classical perturbations that naturally have the required properties.

8.1 Recap of de-Sitter space

For de-Sitter space, we have a cosmological constant, ω = −1. The flat slicing is where

ρ = const, a = eHt where H =
√

Λ
3 . What is important is that there is no singularity at

t = −∞. However, the full spacetime is obtained using closed slicing :

ȧ2

a2
+

k

a2
− Λ

3
= 0

2
ä

a
+
ȧ2

a2
+

k

a2
− Λ = 0

⇒ a = H−1 cosh (Ht).

(8.1)

We are interested in the expanding part of the de-Sitter space.

However, the problem is that if space is produced only by a rigid cosmological constant, it
lasts forever and matter or radiation will never dominate! Remember that :

H = H0

√
ΩΛ +Ωm(1 + z)3 +Ωrad(1 + z)4. (8.2)
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8.2 Slow-roll Inflation

The solution is to consider inflation as Λ + Clock. The clock will tell when Λ decays. This
leads to some time dependent Λ. This is what is called the quasi de-Sitter space. Single
field slow-roll inflation is one realization of this model:

Reheating is where the energy ∼ Λ gets transmitted into radiation and matter, T 4 ∼ Λ. We
must note that the potential does not have to have this particular form, but it is good to
imagine it for simplicity. For a single scalar field we have:

S =

∫
d4x
√
−g

[
1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
. (8.3)

The energy-momentum would be :

Tµν =
2√
−g

δS

δgµν
= ∂µϕ∂νϕ− gµνL. (8.4)

We first use an approximation close to de-Sitter :

gµν = diag(−1, a2, a2, a2), a = eHt. (8.5)

Therefore, in the homogeneous approximation, ϕ = ϕ(t), we have :

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0

ρ =
1

2
ϕ̇2 + V (ϕ)

P =
1

2
ϕ̇2 − V (ϕ)

(8.6)

Furthermore, we have the Friedmann equation :

H2 =
8π

3M2
pl

(
1

2
ϕ̇+ V (ϕ)). (8.7)
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The slow-roll regime is when : ∣∣∣∣∣ ϕ̈

3Hϕ̇

∣∣∣∣∣≪ 1. (8.8)

This makes intuitive sense if you think of it in terms of friction and acceleration. Further-
more, if we consider the space to be close to de-Sitter, H is roughly constant, we then have
P ≈ ρ which means:

| ϕ̇

2V (ϕ)
| ≪ 1. (8.9)

We can massage this approximation and express them as a condition on the potential. Using
eq.8.8 we can write :

ϕ̇ = − 1

3H
V ′(ϕ). (8.10)

If we take the close to de-Sitter condition, eq.8.9, we have :

H =
1

Mpl

(
8πV

3

)1/2

. (8.11)

This means that the potential is basically a cosmological constant. If we substitute eq.8.10
in the near de-Sitter condition we have :

ϵ ≡
M2

pl

16π

(
V ′

V

)2

≪ 1. (8.12)

ϵ is called the first slow-roll parameter. On the other hand, the other slow-roll condition
can also be expressed in terms of the potential using eq.8.10:

ϕ̈ =Mpl

(
V ′′
√
V
− 1

2

V ′2

V 3/2

)
ϕ̇

∼M2
pl

(
V ′′

V
− 1

2

V ′2

V 2

)
Hϕ̇

(8.13)

The second term on the right hand side is negligible due to the condition on ϵ and therefore
we have:

η =
M2

pl

8π

V ′′

V
≪ 1. (8.14)

ϵ and η are called the slow-roll parameters. Let us take some example. We will see that
the simplest potential, the harmonic potential, can actually satisfy the slow-roll condition!
Consider:

V (ϕ) =
1

2
m2ϕ2. (8.15)

Both of the slow-roll conditions yield
M2

pl

ϕ2 ≪ 1. Furthermore, note that in order to be able

to do perturbation theory, we must have m2ϕ2 ≪M4
pl. So the quadratic potential works as

an example of inflation in this regime. Basically we want the field to be very large and the
mass to be very small. We just want to emphasize that it is not so hard to find potentials
which satisfy this condition. Note that by now the purely quadratic potential has been
excluded by observations of the CMB.
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8.3 Perturbations

The first thing to review is the free massless scalar field in Minkowski space.

S = −1

2

∫
dx4ηµν∂µϕ∂νϕ,

E = H =
1

2

∫
dx3

[
ϕ̇2 + (∂iϕ)

2
]
.

(8.16)

We can take this Hamiltonian and recognize that in momentum space different modes sep-
arate and we are left with decoupled harmonic oscillators:

ϕ(x⃗, t)
eiq⃗.x⃗−−−−−→

Fourier
ϕ(q⃗, t)→ ϕ̂(q⃗, t) (8.17)

⇒ ϕ̂(x⃗, t) =

∫
d3q

(2π)3
1√
2ω

(
eiωt−iq⃗.x⃗A†

q + e−iωt+iq⃗.x⃗Aq

)
, (8.18)

where |ωq| = |q⃗|, A†
q and Aq are creation and annihilation operators.[

Aq, A
†
q′

]
= δ3(q − q′) (8.19)

Using the above to calculate the Hamiltonian, we get:

H =

∫
d3qωqA

†
qAq. (8.20)

Remark. Remember the single harmonic oscillator.

H =
p2

2m
+

1

2
mω2x2. (8.21)

We had x = a+a†
√
ω

and:

a =

√
mω

2
(X +

iP

mw
)

a† =

√
mω

2
(X − iP

mw
)

(8.22)

We get the Hamiltonian to be H = ωa†a. Moreover, in the ground state ⟨X⟩ = 0 and
⟨X2⟩ = 1

mω .

We prepare ourselves for going from x to ϕ(q⃗)→ ϕi. The direct analog of the harmonic
oscillator is the following.

⇒ ⟨ϕqϕ−q′⟩ = δ3(q⃗ − q⃗′) 1

ωq
= δ3(q⃗ − q⃗′) 1

|q|
. (8.23)

Now we get to inflationary perturbations (For further reading refer to part 13.1 of
Rubakov’s book or arXiv 16.09.00716).

The full procedure is in principle the following. At first we need to repeat the steps we
did at the classical level for radiation and matter domination with some matter sources for
inflationary theory (fix the gauge, the scalar vector tensor decomposition, ...). In the next
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step, we need to quantize all those fields and not just the scalars. We basically need to
quantize gravity as even if we only care about the scalar modes, we remember that there
are scalars which come from the metric, e.g. gravitational potential. So if one wants to do
inflation, one is forced to do quantum gravity.

We will do a simplified treatment. We just quantize the perturbations of the Inflaton
field. We ignore that the metric is dynamical in the sense that the metric perturbation is
frozen. Therefore, we have a fixed gµν which is just de-Sitter space. One might argue that
in the classical theory, the dominant contribution came from the gravitational potential. It
turns out that for slow-roll inflation, this is still a good approximation. This is not trivial
but in first order of ϵ and η it gives the same answer. Basically the effects that we ignore
when we fix the metric to be rigid are subleading correction in these parameters. Note that
there is nothing conceptually complicated to include metric perturbations but technically it
is hard and that is why we will not do it.

Inflaton Field Perturbations

Note that we change our notation but this is the accepted notation in the community.
We call the Inflaton field ϕ(x⃗, t). Try not to confuse it with the gravitational potential field!
Define:

ϕ(x⃗, t) = ϕcl(t) + φ(x⃗, t). (8.24)

The action for the perturbative part is:

Sφ =
1

2

∫
d4x
√
−g(−gµν∂µφ∂νφ− V ′′(ϕcl)φ

2) (8.25)

What we did is that we took the full action of the scalar field and expanded it around the
classical path. However, we can ignore the second term in the action as it is proportional to
η ≪ 1. Note that quadratic actions give rise to linear equations of motion. This means that
what we did corresponds to linearizing the equation of motion. The equation of motion is
(in FRW time):

φ̈+ 3Hφ̇− 1

a2
∆φ = 0. (8.26)

In conformal time, it is:

φ′′ + 2
a′

a
φ′ −∆φ = 0. (8.27)

It is in fact not so different to do calculations at the linear quantum or classical systems
as you will see. Note that the second term in the above equation is of order 1

|η|k whereas

the last term is of order k2. Just like before, there are two regimes (the reason we put an
absolute value is that η is negative for de-Sitter space).

• If k
|η| ≫ k2 ⇒ |ηk| ≪ 1 or Horizon scale then the mode is outside horizon.

• If k
|η| ≪ k2 ⇒ |ηk| ≫ 1 or Horizon scale then the mode is inside horizon.

This is a manifestation of the fact that modes exit the horizon. When time goes on, η
decreases and we transition from inside horizon to outside horizon. This means that if we
take time going to minus infinity for some fixed k, which means |η| → ∞, our equations
simply becomes:

φ′′ −∆φ = 0. (8.28)
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The same as flat space. This is why we expect ground state oscillations.
In addition, define χ ≡ a(η)φ. If we express the action in terms of χ:

Sχ =
1

2

∫
d3xdη

(
χ′2 − (∂iχ)

2 +
a′′

a
χ2

)
=

1

2

∫
d3k

(2π)3
dη

(
χ′(k⃗)χ′(−k⃗)− (k⃗2 +

a′′

a
)χ(k⃗)χ(−k⃗)

)
.

(8.29)

You see that this is a harmonic oscillator where the frequency is time dependent. We can
again decompose the χ field:

χ(x⃗, η) =

∫
d3k

(2π)3
1√
2k

(
e−ik⃗.x⃗χ+(η)A†

k + eik⃗.x⃗χ−(η)Ak

)
(8.30)

One might ask what χ+ and χ− are. In flat space we had e±ωkη and ωk = |⃗k|. Remember
that we had these exponents as they were solutions of the equations of motion (φ̈k = ωkφk).
This comes from the fact that quantum operators satisfy the same equations of motion as
classical fields:

ṗ = [H,x] = ω2x, ẋ = [H, p] = p. (8.31)

Now for the classical part we have:

χ′′cl
v − 2

η2
χcl
k + k2χcl

k = 0

⇒χ± = e±ikη

(
1± i

kη

)
.

(8.32)

Note that the initial conditions are fixed by matching to flat space vacuum fluctuations at
|kη| ≫ 1.

However, at late times we have:

⟨φ(k)φ(k′)⟩ ∼ δ3(k + k′)a−2(η)
1

k
.

1

|kη|2
= δ3(k + k′)

H2

k3
. (8.33)

Note that the first factor of 1
k was present in Minkowski space as well but the other two

are new. You see that H2

k3 is the same scale invariant power spectrum we saw in CMB
anisotropies. We will also see why it is not exactly 3 in inflation. Note that we call this
scale invariant as d3k 1

k3 is invariant. This is just the fluctuations of the Inflaton field. Now
how do we go to the gravitational potential?

First observe that these superhorizon modes are (semi-)classical. The condition for a
state to be semi-classical is:

⟨n|X2 |n⟩ ≫ ⟨0|X2 |0⟩ = 1

ω
=

1

k
. (8.34)

Basically what happens is that at early times we have the wavefunction at its ground state:
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However, as time goes on, we go to the highly excited levels of the harmonic oscillator:

In essence, having this time dependent frequency keeps creating this quanta until it becomes
a classical state! This process enables a transition to a classical description for superhorizon
modes by the end of inflation. It’s important to note that these superhorizon modes are the
primary focus of our interest (see Figure 1).

Figure 1: Evolution of physical Modes in Inflationary Cosmology

During inflation, modes exit the horizon, and later, they re-enter the horizon. It is after
this re-entry that we observe them. So what does this classical description mean?

The perturbations, φ, on top of the solution, create these oscillations (green lines in the
figure). This is triggered by this quantum perturbations that are at first quantum mechanical
and as the whole universe expands they become classical. This means that now if we look
how this happens in spacetime, lines of constant φ are not straight lines exactly because of
the quantum fluctuations. There is some critical value ϕ∗, where reheating happens, that is
the point our slow-roll approximation breaks down.
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You see that it happens at different moments of time at different places in the universe due to
the fluctuations. Now, we can say that the reheating time is itself a function of coordinates
(note that we can say this in a fixed gauge but this is the most intuitive picture).

δtreheating(x⃗) =
φ(x⃗)

ϕ̇cl
(8.35)

We proceed to calculating the gravitational potential:

gravitation potential ϕi =
δa

a

∣∣∣∣
treheating

=
ȧ φ

ϕ̇cl

a
=
Hφ

ϕ̇cl
(8.36)

Moreover, we know that ϕ̇cl =
√
V ϵ = HMpl

√
ϵ.

⇒ϕi =
Hφ

HMpl
√
ϵ
=

φ

Mpl
√
ϵ
, (8.37)

where ϕi is now a classical random variable which is the enhanced quantum mechanical
oscillation.

⟨ϕiϕi⟩width of distribution =
1

M2
plϵ
⟨φφ⟩

=
H2

ϵM2
pl

1

k3
δ3(k⃗ − k⃗′)

(8.38)

To match observations, we must have:

H2

ϵM2
pl

≈ 10−10. (8.39)

In our approximation which was exact de-Sitter space, we obtain 1
k3 but if we include

slow-roll corrections, one gets a power spectrum that is:

P (k) =
1

k3+(1−ns)
. (8.40)

For our simple model: ns − 1 = 2η − 6ϵ. Experimentally, ns = 0.965 ± 0.004 which is
consistent with ϵ, η ∼ 10−2 which means our slow-roll approximation is justified.
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